4.1 Triangles

KEY CONCEPT

For Your Notebook

https://www.mathorama.com/geom/glabs/ TríangleApp.html

Use slopes to check if it is a right triangle

Equivalent to Euclid's Parallel Postulate (John Playfair's axiom)

Through a point outside a line, there is exactly one line parallel.

Theorem: The Sum of the Interior Angles of a Triangle is 180°

5

A

Given: $\triangle ABC$ Prove: $\angle 1 + \angle 2 + \angle 3 = 180^{\circ}$

Draw D so $\overline{DA} \parallel \overline{BC}$ $\angle 5 \cong \angle 2$ $\angle 4 \cong \angle 3$ $m \angle 4 + m \angle 1 + m \angle 5 = 180^{\circ}$ $m \angle 1 + m \angle 2 + m \angle 3 = 180^{\circ}$ Through a point outside a line, here is exactly one line \parallel Alt Int \angle 's s are \cong Alt Int \angle 's s are \cong Def. Supp. Subst.

B

3

C

Exterior Angle Theorem

Given: $\triangle ABC$ Prove: $m \angle 4 = m \angle 2 + m \angle 3$

 $m \angle 1 + m \angle 2 + m \angle 3 = 180^{\circ}$ $m \angle 1 + m \angle 4 = 180^{\circ}$ $m \angle 1 + m \angle 4 = m \angle 1 + m \angle 2 + m \angle 3$ $m \angle 4 = m \angle 2 + m \angle 3$

 $\triangle = 180^{\circ}$ Def. Supp.

B

3

Trans.

A

Subtr.